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Abstract. The Poincaré—Cartan (PC) form of a Lagrangian on the bundle J2 = J2(N, M) is,
as a general rule, defined on J? thus leading to a non-equivalence between Euler-Lagrange and
Hamilton—Cartan equations. This naturally leads to the problem of determining what Lagrangians
have a PC form projectable onto J2, as they will then admit a second-order Hamiltonian formalism.
There are specific examples of this phenomenon in field theory. This paper provides an explicit
classification of such Lagrangians.

1. Introduction

As is well known, the extremals of the functional defined by a first-order Lagrangian density
Ldx" A --- Adx"” on J' = JYN, M), where M, N are C*™ manifolds of dimensions
dim N = n, dim M = m, can be viewed as the solutions to the so-called Hamilton—Cartan
equation; i.e., a field f : N — M is an extremal if and only if (j!f)*ixd® = 0 for all
X e TJ! (cf[1, formula (3.7)]), where

©=Hdx' A - Adx"

LU ., 0L : —
+ZZ(—1)J*18—idy'Adx‘A-.-Adfo---Adx” 1)
Yj)
is the Poincaré—Cartan form (hereafter PC form) attached to L, the function H is given by

m n aL ;
H=L=) ) 35 @
i=1 =1 9

i=1 j=1

and (y)1<i<cm> (X 1<j<ns (X7, 7, y;) are coordinates on M, N, and the induced coordinate
system on the one-jet bundle, respectively.

The basic point in the Hamilton—Cartan formalism is that any solution f : N — J! to
the Hamilton—Cartan equation is automatically holonomic whenever the Lagrangian is regular.
Therefore, the extremals of a regular variational problem are the n-dimensional solutions of
an exterior differential system on J'.

However, for a second-order Lagrangian density, the PC form lies on J3 and the
corresponding Hamilton—Cartan equation should now read

frixd®=0 VX eTJ?
where f : N — J? is a section of the natural projection J> — N. There are three cases as

follows:
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(1) For n = 1 (i.e. in second-order mechanics) the theory is the same as in the first order
(see [2]).
(2) Assume n > 2; then,

(2.1) the set of solutions to the Hamilton—Cartan equations is larger than that of Euler—
Lagrange equations for every Lagrangian, and

(2.2) with a suitable notion of regularity (stronger than the classical one), it is proved in [3]
that any solution f : N — J? to the Hamilton—Cartan equation is holonomic up to
the second order.

As we can never reach the third-order holonomy, it is natural to pose the question of
determining the second-order Lagrangians whose PC form is projectable onto J2.

In field theory there are two basic examples of Lagrangians, the PC form of which projects
onto a jet bundle of lower order. The first one is the Lagrangian L that governs the interaction
of the Dirac electron field with an electromagnetic potential. In this case, L; is a first-order
Lagrangian whose PC form projects onto J° (for the details see, e.g., [4, section 7.2]). Because
of this, Dirac’s equation is of first order. Actually, L; is a first-degree polynomial in the
derivatives y’] The second example is the Lagrangian L, defined by the scalar curvature on
the two-jet bundle of Lorentzian metrics on space—time. Now, the PC form of L, not only
projects onto J2 but also onto J!, thus leading one to a first-order Hamiltonian formalism.

The goal of this paper is to provide the classification of second-order Lagrangians, the PC
form of which projects onto J? and therefore admit a true second-order Hamiltonian formalism.
We should remark that in the above examples the PC form projects onto a lower-order jet bundle
due to the fact that the Lagrangian is a first-degree polynomial on the higher derivatives. The
converse only holds for n = 1 but it is no longer true for any dimension n > 2. In fact, as we
shall prove later on, the first-degree Lagrangians in the second derivatives are a small subset
of the Lagrangians, the PC form of which projects onto the second jet bundle.

2. Preliminaries

2.1. Jet bundle notations

We use multi-index notation. A multi-index o = (¢, ..., a,) of length n is an element
o € N', where || = a1 +--- + «, is the order of @. The sum of two multi-indices is
defined componentwise. Multi-indices are ordered as follows: o < 8 means «; < §; for all
i =1,...,n. Similarly, we set

al=a!...a,! (a>=a—! B <a.
! B)  Bla—p)!

Forevery 1 < j < n we denote by () the multi-index o whose entries are given by oy = 6 jy,
1 <k < n. Wealso set (jk) = (j) + (k), (jkl) = (j) + (k) + (I), etc. The Kronecker symbol
of multi-indices is defined as usual; that is, §op = 1 if @ = 8, 48 = 0 otherwise. Below we
will need the following lemma whose proof is straightforward.

Lemma 2.1. With the above hypotheses and assumptions we have
Shiy(jiky = Onjdik + OnkSij — 01id xSk

Let (x/, y", yi), hi=1,...,m, 1< j<n,0< |a| < r be the coordinates induced on
J",0 < r < 3, by the systems (y')1<i<m» (X/)1<j<n On M, N, respectively, with y{ = y'; i.e.
VEGLF) = @y o f)/o(chH™ . 9 (xm)) (x).
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2.2. Second-order PC form

We recall that a PC form naturally associated to a second-order Lagrangian is locally given by

(cf[5])

m n
@:del/\~-~/\dx"+ZZL;jdyi/\dxl/\-~-/\ dx/ A -+ Adx"

i=1 j=1
+Y Y Lidyjy Adxt Ao A dxd A AdX" 3)
i=1 jk=1
where
aL (=1 d aL
l] — ( 1)/ 1 + Z ( ) - :
l 2— ‘k dxk 8y’.
(J) k=1 (k) 4)
d
dxk E:Z:%wm,
i=1 |a|=0
is the total derivative operator corresponding to d/dx* on jet bundles, and
TR0 YEIINIED 9 P TN
i=1 j=1 111k1 Iky )
. (=17t AL

k = — y .
T 2= 8k Ay

3. Statement of the result

Before stating the theorem, we first introduce some notations. For every s = 1,...,n, let
Z, be the set of increasing indices I = (iy, ..., is), where iy, ..., i, are integers such that
1 <ip < - <iyg <n Fors = 0wesetZy = . The elements I € Z; are in
one-to-one correspondence with the increasing maps 7 : {1,...,s} — {l,...,n}, that is,
I(1) < --- < I(s). We order Z; lexicographically; that is, I < J means there exists an index
h=0,...,s—1suchthati; = jj,...,i = jp,ip+1 < jn+1- Bearing these notations in mind,
wesetforeveryh,i=1,...,.m; I < J,I,J €Z;2<s<n,

h i i i h i
ygm) Yay o Yao || Yain ygl.m e Y
1 1 1 1
hi Yirjy Vg - Vg Yirjy Y 0 Vg
A= . . . R e . . .
h. i‘ i i' h. i
Yoy Y 0 Yo Yy Y 0 Yy
i i h
Yaj Y o yﬁ,"”‘)
Vi Vi, i coe Vi
+ (1?11) (ljh) (l?j) (6)
i i. h
Yy Vi - Yy
We also set:

(i) Al = 1fors = 0.
(ii) Alh]’jl = y(hl.]jl) fors = 1.
(iii) Ay; = Ay; whenever I > J.
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(iv) Given an index 1 < k < n and an element I € Z;, we define

N Al s if kel
=710 if kel

where I — {k} denotes the increasing sequence obtained by deleting the index k in 7; that is,
I—k=C(i1,elpnen,iy) i =k

and similarly for A}, _,.
Remark 3.1. We have

(1) Al = Al fors = 2.

Q) A} = DNy Tk # Lbut AY o # AJE ) as the left-hand side is always
zero whereas the right-hand side does not vanish necessarily.

(3) The functions A’,”J are not linearly independent; for example, we have

hi hi hi
A(112L13-~as)(341/13--~as) - A(113513~~»as)(24agmaj) + A(1ll4a3»--as)(23a3~~-as) =0.

Theorem 3.2. The PC form of a second-order Lagrangian L is projectable onto J*(N, M) if
and only if L can be written as

n m
L= Y > Al ©)
s=0 I<J,1,J€Ty h,i=1

for certain differentiable functions f Ihji on J' (N, M).

4. The associated linear PDE system

Proposition 4.1. The PC form of a second-order Lagrangian L is projectable onto J? if and
only if the following system of linear partial differential equations (PDEs) holds:

1 1 9%L
sy oy 0 ®
j=1 7k OYa—(jH9Y(jk)

for every system of indicesa € N, || =3, 1 <k <n; h,i=1,...,m.

Proof. A necessary condition for © to be projectable onto J? is that L;; depends only on up
to the second derivatives. Hence, from the formula (4), it follows that (8) must hold for every
multi-index |o| = 3andevery h,i = 1,...,m, 1 < k < n. This condition is also sufficient as,
if equations (8) are satisfied, then H € C*(J 2), as it follows from formula (5). Consequently,
the Lagrangians, the PC form of which is projectable onto J2, are the solutions of a system
of homogeneous linear partial differential equations with constant coefficients which are to be
determined explicitly. O

There are three types of equations in (8).

I If a = (aaa), 1 < a < n, then (8) becomes
9%L
o =0
9Yaa) 9 (ak)

withh,i=1,...,m;a,k=1,...,n.
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1I.l. Ifo = (aab),a #b #k # a,thenfora,b,k =1,...,n,equation (8) reads:
(a) forh #£ 1,

3%’L 9’L
P I N A
Yap)9¥@ky — Vaa)9Y vk
withh,i =1,...,m,and
(b) for h =i,
9L 9L
=0

+ =
h h h h
a)’(ab)aY(ak) 8y(aa)ay(bk)
withh=1,...,m;b < k.

11.2. Weassume o = (aab),k € {a,b},a,b,k =1, ...,n. If k = a, then equation (8) reads
3L 3L
i i Yoo — =0
ar)0¥iaa)  9V(aayVian)
and each term vanishes because of the equation in (I). Hence we have the case k = b remaining
and we further suppose a < b by index symmetry. Then:

(a) forh #1,
9’L d’L
h 2 — =0
Watyd¥iaby — Viaay V(o)
withh,i=1,...,m, and
(b) forh =1,
32L 9L
h ot h — =0
Y (ab) OV (ab) Y (wa) O (i)
withh =1,...,m.

IILl. Ifa = (abc),witha <b <c,k #a,b,c,for h # i we have
92L 9%L 9%L

8h8i+8hai+ahai =0
Yooy OVaky  9V@e)?Ywky  9Viab) 9 (ck)
withh,i=1,...,m;a,b,c,k=1,...,n,and
11.2. ifa = (abc),witha <b <c <k, forh =1,
3’L 9%L 9’L

a7 o o oy oyt g O

Yoe)?Yaky  9VaeyOYwky  OViab)?V(ck
withh =1,...,m.

In the case (III.1) it is proved that half of the equations depend linearly on the other half,
and in the remaining cases the equations are linearly independent. Hence, the number of
essential equations in (8) is
n=ulm,n) = %(m + 1)ymn +m2n(n —D+mim—Dnn—1)n —2)

+imn(n — 1)(n —2) + im@m — Dn(n — 1) + tmn(n — 1)
+sm(m — Dn(n — D(n —2)(n — 3) + symn(n — D(n —2)(n — 3)
2m — 1 — — -
=m( m )n4+m(2m 1)n3_m(14m 25)n2+m(2m l)n.
24 4 24 4

®
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5. Proof of theorem 3.2

5.1. The ‘if’ part

First, we check that the functions A],“J introduced in section 3 satisfy the system (8). As it is
linear, all functions in the formula (7) will also satisfy the system, thus proving the ‘if” part of
theorem 3.2.

The proof is by induction on the order s of the determinants in A",. The case s = 1
is immediate since A’}’J is of first order and, as the system (8) is of second order, it holds
identically. The case s = 2 is exceptional because of the factor (s — 2)~! that appears in
the recurrence formula. Moreover, the proof of this case is particularly cumbersome since
BZA% /0 y(”uv) 9Y(x 1s a constant expressed as a function of the Kronecker deltas of the indices
involved. Therefore, we are led to write a different proof for each type of equation (i.e. (I)—(III))
into which the system (8) decomposes. In the general case, the proof resorts to an analogous
technique in order to state that the coefficients of the functions Qf;”*’ , defined below, vanish.
These coefficients are expressed again in terms of certain Kronecker deltas of the involved
indices.

We start with the following lemma.

Lemma 5.1. With the same assumptions and notations as above we have

BAl-liJ S XS: k+l ii
—r = =8 ) (=" i AT i s
vy s—1 7 4= o

(la|=2a,i=1,....m;1,J €Z;, I < J,s > 2).

(10)

Proof. The formula in the statement follows, after a calculation, from the well known formula
for the derivative of a functional determinant A = |Cy, ..., Cy|, the columns of which are C;;
that is,

AN =|C|,Cyqy...,Cs|+|C1,Chyo, Cyl+---+|Cy, ..., Csq, CLI.

Proposition 5.2. The functions A?”J in section 3 satisfy the system (8).

Proof. If s = 1 the result is obvious as the second derivatives of A, vanish identically in this
case. This is because each A?"J is a linear function (see section 3—(ii)). If s = 2, then from (6)

we have
h i i h
Yajy Yy | 4 | Yo Y
h i i h
Yairjiy Yo Yarjiy  Viirjo)
and taking partial derivatives, from lemma 2.1 we obtain
2 Ahi
0°AYY
b
Yy 0¥y

Al — n I = (i1 <ip) J =31 <))

= (8halip + iabnp)

X [(8kiy 81jy + 8kjy 01iy — SkiBiy j, Okji) BuinSujy + SujySviy — SuviyjpSujp)
—(8kiy01jy + Skjy S1iy — 181y Sk jy ) (Buiy vy + 81 jyuiy — Buwdiy jo0ujy)
+(8kir 01, + Ok jy 01y — SkiBiyjo Ok jy) (Buiy Sujy + Sujy Sviy — Suviy jy 8ujy)
—(8ki, 81, + Sy 811, — S1a8iy jo 6k j,) Buir 8ujy + 8uj Bviy — Buvdiy jy uji)]- (11)

According to equations (I)-(III) we have to distinguish three cases as follows.
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G) If . = (vvv),v,l =1,...,n,then from (11) we obtain
82 Ahi
—— = (Bnabiv + Sianp)

Y (o) Yoy
X [8112 (8vi180j1 51'2]1 - 8vl'28vj| 8i1]1) + 81]1 (8vi28uj28i|j2 - Svilavjzsizjz)
+8yj,80j, (—81i, 8, j, — 81i, 8inj + 1iy Sijy + 81iy Sy )
+28y, 80,801 (—8vi, 8i j, — Sui 8is jy
+8vi, 8y jy + OvirOiy jo + i jy 61 jy — 8irji iy o) 1-
On the right-hand side of this formula the terms 8,8y, 8,15 Svi,8vj,8i,jis Svir0vj,0i, o>

8vi, 8vj,68i, j, vanish as v = iy = j; implies §;,;, = 0, and the same for the others. Similarly, the

factors 6, ,0y,, 8vj,8vj,0v also vanish.
(ii.1) If « = (uvv), u # v # [ # u, then from (11) we obtain

9%L %L
b a + b a

Y90 Y0V
+80j, Buvi, — 8, ) Bujp 81ir + BuirS1j,) — Bujy (Buiy, — 84, jo) (Buir 1)y + Oujy 81iy)
_811.]'1 (Sviz - (Sizj] )(81,4]2 Slil + 8141'1 81]2)]

and the right-hand side vanishes for
8uj, (i, — Biyj) = Bujy (Buiy — i jy)

= 811]2 (Svil - Siljz) = (Svjl (8vi2 - 8i2j1) =0

= (8nadib + 8iabnp) 8y, (Svis — 8irj) (Bui, 81j, + 8uj B1i))

asiy < jo.
(1i.2) If « = (uvv),l = u, v < u, then from (11) we obtain
AL, Rl

+ = (4814[ 814‘ - 281 j 514' )81 j 81}'
b b 27U 217U 1)2%v)2
Y (uv) Y (uv) CAYEYA

+(48i,j,8uji — 68ui,8uj,)0vii Ouj, + (48, — 684i,)Suiy 8ujyOujy
+(48viy, — 281j,)8i) j,8ujybvjy

+((68ui, — 481, ,)80iy + (281, , — 48ui,) i, i) vy Sujy
+((68yi, — 48i,j,)8ui, + (28, — 480i,)8i1j)Svjp ujy -

On the right-hand side the first four terms vanish as i; < j,. If v = jj, u = j, the sixth
term vanishes and so does the fifth, which is easily checked. Similarly, when v = j,, u = jj.
(i) If « = (uvk), u < v < k, 1 ¢ {u, v, k}, then, as a simple calculation using Maple V
shows, from the formula (11) we conclude that the sum

Ay a0l
b b b
e 0Vany VeIV ViV
vanishes identically.

Now we proceed by induction on s assuming s > 3. Expanding the Ath determinant in
Ai”j according to its ith column for A = 1, ..., s, we first obtain

) 1 s ..
h k+l _h
Ay = s—1 Z(_l) Vi Al—i =i (12
k=1

and taking derivatives we have
IAY

AN, g i I=ig.J—j
— = N (DM 88 g A e (13)
ay(brt) s—1 k,lzzl L Ji ik J =i (Gix ji) ay(brt)
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Again taking derivatives, and summing up,
2 Al
9 AI—ik,J—jz

S e, 3

s —1) = 04 3 (—1yyh (14)
p A N A v A L2 = 8 Y)Y

where

ng’l = i i(_])k# S 8(”),(1%_/'1) 8Al’l—ikJ—jz + 8 Sa—(r),(ikjl) aAlll—ik,J—jz

a b
k=1 r=1 2= Wy 2= n Ay
By the induction hypothesis the second term on the right-hand side of (14) vanishes. Hence
we are led to prove ng” = 0, for every multi-index « € N”, [¢| =3 and alla,b=1,...,m,

t =1,...,n. Byapplying lemma 5.1 to the derivatives of A","_ik, J—j, in the formula above we
obtain '

s—1 T
b, k+k'+1+" ~kK LD
Q3" = —— Gudia +8uad) Y (DAL
s = 1<K <k<s
1<V <I<s
: ii AL
with AI(W)JW) = AI*{ik,ik’}qJ*{jl,jl’} and
n
kk' 11t __
C, => 55 B .iwinda—).Gir) = 0. Gejin o). iy i
r=1 < 9t

=8 ), Gy ) ). i ji) F 8r0). iy jo) Sa—(r). i ji) ) -
As the functions A’I’(W)’ Jar, intherank 1 <k’ < k <s,1 <!’ <1 < s arelinearly independent,

Q% = 0 if and only if C¥¥"/"'* = (. Similar to the case s = 2 we have to distinguish three
cases as follows.

(1) If « = (vvv), then a simple calculation by using lemma 2.1 yields
Q2= 8:)C " = 8uii81jy Bui,Big i — Buiy 8 i) + 0y 81j Bt Sijy — S0ty )
+8yj,00j, [(Bri, + 280160i,) (Bis jy — Si )
+(8tiy + 280801, ) B jy — 83 i) + 280 (83, 84 jy — iy jy Sipy )1 =0
for 8,,6vj, = 0, 844, 68;,,j — 8vi, Si,j, vanishes when v = j; and, analogously, &,;,,6
8vi, 0i,, j, also vanishes when v = ji.
(i) Assume o = (uwvv), with u # v. Then we have to consider three subcases as follows.
(ii.1) If ¢ £ u, t # v, then
2Cf:z/)’1f§,,t = ((Suikatﬁ + 8Mj18tik)8vj1/ (5uikr - 8ik,j,,)
+(8uiy 81jy + 8ujy 01i )8uj, (i jy — Suiy)
+(8uiy 1)y + 8ujy8ti ) ujy (Siy jy — Buiy)
+(8uip 81jy + Sujy 01 )Suj (Suiy, — 8ijy)
and the right-hand side vanishes as
8ujy Bviy — iy jur) = v, (Sip jy — i)
= 8yj, (8iy jy — vi,) = v, (Buiy — 8i, ;) = 0.
(ii.2) If t = u, then C{! " = 51 + 52 + 53 + 54, Where
S1= 8ujiSvjy 38uiy Sviyy + 83y jiBiy jy — 280, jiSviy — 28uiy By i)
82 = 84, 6vj, B8uiy, vy + iy, jyBic jy — 283, j,Bviy — 28ui Siy i)
83 = 8y, 80, (38uiy Sviy + i ji i jy — 284 jy Bvipy — 28uiy Sijy)
4 = 84j, 8j, (B8uiy Sviy + 8iy jiSi jy — 283y Svip — 28ui, 8 )
and it is easily checked that the right-hand side of the equations above vanish

identically. Hence C ﬁf;lfi“ =0.

ijr
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(ii.3) If t = v, then
Kk 10
%C(uvv) = SUjISU.fz’ [((Sikjl’ - Sik.jl)auik’ + (81';/]} - Sik’jl’)(suik]
+84j,0vj, By jy Sviy — Siyy jy Oviy) + Sujy Oujy (Biys jy vip. — Siy jyOviys)

KK
and C " vanishes as

8vj,8vj, = 8ujy (i ju Ovipy — Biy jy Oviy) = Sujy (8iyy jiOvip, — Biyji6vip,) = 0.
(iii) If « = (wvw) with u # v # w # u, then we have to consider two subcases as follows.

(iii.1) Ift ¢ {u, v, w}, then Cﬁfvif)” = 0 as a simple computation shows.

(iii.2) If t € {u, v, w}, say r = u, then Cé‘:v’lf}l)‘” = 51 + 52 + 53 + 54, where

s1 = (8uviy Owj, + 8ujy, Ouwiy )Sujy Suiy — 8iji)
52 = —(8i,Swjy + Sujy Swiy)Ouj, Buipy — iy jy)
53 = —(8uiy Owj, + Suj,wiy )Sujy (Buiy — iy jy)
54 = (8vi, Swjy + 80, 0wi)0ujy Buiy — 8iji)
and every summand vanishes as
Bujy Buip, — i jy) = 8ujy Buipy — iy jy) = Sujy Buip — Siyjy)
= duj, Guiy — 8ipj,) = 0.
For t = v or w the proof runs analogously.

This completes the proof of proposition 5.2. ]

5.2. The ‘only if’ part

Next, we prove the ‘only if” part of theorem 3.2.

As the determinants Aﬁ”] are polynomials of degree <n, the first step in the proof consists
of proving that an arbitrary solution L to the system (8) is also a polynomial of degree <n
(see proposition 5.3). Moreover, as the system (8) is homogeneous, it suffices to state the
proof for the homogeneous solutions to (8) of degree say s, with respect to the second-order
variables yé - Starting from this point the proof is by recurrence on s. Fors = Qors = 1
the result is trivial. As in the ‘if’ part, the case s = 2 is exceptional because of the factor
(s —2)~! appearing in the recurrence formula. To prove this case we first need to establish
certain symmetries of the second derivatives of L (see lemma 5.4 below).

For the general case, the basic idea is to use the fact that if L is a solution to (8), then so is
dL/9y(g,,- Then, we apply the recurrence hypothesis to this derivative (see the formula (22)).
Since L is homogeneous of degree s + 1, from Euler’s theorem we deduce the formula (23).
The rest of the proof—in essence a long computation—reduces to state that certain symmetries
of the functions f ;f’,f;.)‘” hold true allowing us to factor out the determinants A’}f ;o of order s +1
in the expression of L. This finishes the proof.

Proposition 5.3. If a function L € C®(J?) satisfies the system (8), then L is a polynomial
function of degree <n in the variables y',, 1 < i < m, |a| = 2, with coefficients in C*(J").

Proof. We only need to prove that for all indices iy, iy, ..., i, = 1,...,m,ap < a; < --- < ay,
1 <a; <b; <n,0< i< n,wehave
8n+lL
=0. (15)

i i in
9 (abo) V@) Vi,
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In fact, taking derivatives with respect to 9/9 y(’a ) on the equation (IL.1), we obtain

3L 3L

h i AN — =0 (16)
ary a0ty Iiaa) 0iad) Oive)
for all indices h,i, j = 1,...,m,a #b # c # a,a,b,c,d = 1,...,n. From equation (I)
we conclude that the second summand on the left-hand side in (16) vanishes. Similarly, again
taking derivatives with respect to 9/ 8y(]a 4 on the equation (IL.2) yields

3L L
o g T2 g o =0
Y by 0¥ (b)Y (aa) Y wa) Y (aa) O (o)
for all indices h,i,j = 1,...,m,a # b,a,b,d = 1,...,n, and proceeding as above we
finally obtain
3L
PAVEP IS R (17
Y ab) 3V (ac) 9V (aa)
for all indices h,i, j =1,...,m,a # b,a #c,a,b,c,d =1,...,n.
Moreover, we remark that every sequence of bi-indices (apby), ..., (a,b,) such that

ag < a; <---<a, 1 <a; <b; <n,0<i < n, satisfies either

(i) there exist two indices 0 < i < j < n,suchthata; = b; = aj ora; = b; = b;, or
(ii) there exist three indices 0 < i < j < k < n,suchthata; = a; = a,

as it is easily checked that the only sequences of maximal length satisfying neither (i) nor (ii)
are (12), (13),...,({,i+2),...,(n—1,n)and (11), (22), ..., (nn), both of length n. Hence
from (17) and taking into account (i) and (ii), we conclude that (15) holds, thus finishing the
proof. ]

According to proposition 5.3 every solution to the system (8) can be written as L =
>y Ly, with

rLy= fii®va - e, fone e e as)
| = 2 1<h<s iy ey =1,...,m.

As equations (8) are homogeneous, L is a solution if and only every L; is a solution to this
system. Hence from now on we assume that L itself is homogeneous; i.e., there exists an
integer 0 < s < n, such that

by..ahs i i by-asbg 1
rL = fi yé;,;,,) e .yéﬂsbg) FITEP e ()

UERR 1l

(19)
an < by I1<h<s ay < -+ < ay.

For s = 0 or 1, the result is trivial (see (i), (ii) in section 3). For s = 2 we proceed directly.
First, we state a general result in the following:

Lemma 5.4. Let L be a solution to the system (8). For arbitrary indices h,i = 1,...,m;
a,b,c,d=1,...,n,a <b, c <d, we have
d’L 9’L

7 - = n h .
VaryOVeay  OViab)OViea)

Proof. If 1 = i, the result is trivial, so suppose & # i. First, we assume a, b, c, d are pairwise
different. Then, from equation (III.1) we obtain
%L 9%L 9%L
n Tt o Yo — =0.
ooy Vaay  VaeyVway Vi) 9Viea
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Permuting ¢ and d,

9°L d’L 9’L
P N T T T
Yod)?Vae)  OVaad)?Vbe)  9Viab) OV (cad)
and permuting / and i in the former equation,
9°L 2L 9°L _o

N oy ayh oy oAy
Yady?Ywe)  OVba)9V@e)  9Vied)?V(ab)

Subtracting the last two equations we reach the required conclusion. Next, we assume d = a
(the cases d = b, d = c are the same). Then, from equation (II.1.(a)) we obtain

9%L 9L
o ay oyt oy 0
Yab)?Y@e)y  9Viaa)9Yibe)

and permuting b and ¢, and comparing both equations, we reach the required conclusion. If
a = b and ¢ = d but a # c, then from equation (I.2), permuting a and ¢ we have

92L 02L 02L 0’L
7 T T h — =0 7 T T h — =0
Doy MV Vieo WaoyWao VeV
and comparing both equations we have our conclusion. Finally, the cases in which three or
four of the indices a, b, ¢, d coincide are trivial because of equation (I). ]

Next we continue with the proof of the case s = 2. If L is a second-degree homogeneous
solution to equations (8) then the Taylor expansion yields

! L B
L=32.2 2 5o o YanYieay (20)
hi a<b c<d 9Y(ab)9Y(cd)

We assume a < b < ¢,d # a,b,c, h # i. Then the terms involving the indices 4, i, and
a, b, c,d are the following:

1< PL oo VL L,

Ny Y)Y Yy

W (ab)Y(cd) 7 (o) Y(bd) 7 (ad)Y(bo)

2\ 9Yapyd¥(ca) e Y (ae) Y (par) “ 9 (0¥ (be) ¢ ‘
.\ 9%L P 9%L VN 9%L W
A aai YedYan Y o a0 Yo Yao T T a0 Yo Yaa) )
WeeayWany 00V (ac) 0V

Using equations (III.1) and taking into account lemma 5.4, the sum above is readily seen to be
equal to

1 9L hooi hooi B hooi
S\ OwnyYiear ¥ YeearYiavy — Ybe)Yiad) = Yiad)Ybe))

—
2\ 0¥(apydY(ca)
2L P P P P
+—a P gy (YaeyYody + YbayYae) — YibeyYiad) — Yiad)Yive))
Yiae)?Y bay
1 3L A 3L A )
= | ——Al AN ) (1)
7 (ac)(bd) 7 (ab)(cd)
2<3y<ab>8y<lcd> “ Wy DVay

The case where @ = b = c is trivial by virtue of equation (I). When a = b, (or ¢ = d), the
sum above is now

1 3L

S Ao aa)
I3 ] ac)(ad)*
2 3¥(ae) ¥ aa)



6014 R Durdn Diaz and J Murioz Masqué

Last, if a = ¢, b = d, this yields
1 9°L ni
5 avh aui Sab)(ab):
2 3Yaay 0¥ (v

But these two cases may be seen as mere specializations of the general formula (21) with
suitable values of a, b, c and d. So, for s = 2 and remembering that L is a second-degree
polynomial, it becomes apparent that L is always a linear combination of at most two ‘Deltas’.

Next, we assume 2 < s < n and that theorem 3.2 holds for every homogeneous function
L of degree s. Let us consider a homogeneous solution L of degree s + 1 to equations (I)—(III)
and let us fix three indices 1 < o < m, 1 < B < y < n. As equations (I)—(IIT) are linear,
homogeneous, and with constant coefficients, it is clear that dL/ 8yf‘ﬂy) is also a solution to
this system. Hence, by virtue of the induction hypothesis, we have

oL BT o hi 1J I
F = fEDUVA el e CUN (N, M), (22)
y
In the previous formula we have applied Einstein’s convention for repeated indices, and we
will do so from now on, since otherwise the formulas become too long.
As L is homogeneous of degree s + 1, from Euler’s theorem we obtain

be),1J 1
(s+ DL = yj, 3y" fa( fra Yo ATY (23)
Yibe)

and taking derivatives with respect to yf‘ﬁy) on both sides of (23) from equation (22) we have

aAhi
(ﬂ}/) IJ A hi BY).1J A hi (be),1J 1J
(S+1)f Al _( +]) — Ja,hi Al fahct fbc)a o

ay(ﬂy) Yy

Hence

IA hi
By),1J hz (be),1J a 1J
fa h)tl A fa hcz (bc) 3 o
Yy
Before going on, let us introduce a notation. We set: if [ = (i},...,is) and B8 € [, then
u = v;(B) means B = i,. The following is quickly checked:
vi(B)—1 it k<v(B)

v, (B) = { not defined if k=v;(B) (25)
v (B) it k>v(B).

As a simple computation shows, by using the very definition of A’; ', we have

(24)

dAY,
ay?ﬂy) s —1

5(11‘((_1)V’(ﬂ)+v"(y)Ai1i_,3,1_y + (_1)Vj(ﬁ)+v1()/)AiIi_%J_ﬁ)_ (26)

From formula (13) and using (26)

8Ahi 1 s ial

1J (i

3 = 1 Do (=nt {5ha3(ﬂy>,(ik.fz)A'I’-ik,J-j,
Yigy) k=1

s—1
h i
+s — 25aiy(ikj1)[(_l)vl (B j’(y)Alll B—ix,J—y—ji

+(=1)"-i (B)+vi—ip (¥) Al}i—y—ik,J—ﬁ—_j, ] } . 27)
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Hence equation (24) reads

BY), 1T A hi (be),1J k+l
fa hi A l fa hi ?bc)( Z( 1) {Shas(ﬂ)/) (thI)AI i, J—ji
kl 1

s—1
h i (B)+ )
8 (DI ONL
(B)+vi—iy (v)
AP ONT ]}> @
and using formula (25) the preceding equation becomes
S
BY) AT Ahi _ (bo), 1J k+l i
fa hi Allj = a,hi yzlbc) Z (=D Shaa(ﬁy),(ikj:)Alllfik,ij,
k=1
s+1
(be), 17 k+l i -
a hca yE’bL)|: Z( ** y(ikjﬂ(_l)ul LB+ (v)
k=1

i (V)+ B)
><A1 B—ik,J—y— JI+( DU, e W”ﬂAagy ix,J—p— Jl:|

(be),1J ii
f c a ((_1)\11(/3)+VJ(V)AIII

a,ai y(bc) —B.J— + ( 1)”1(V)+VI(I3)AH

T—y.—p)
(_ )W(ﬂ)+w(}/)

b 1T _a K+
L — %Y (bc)( D DA iy

1<k=vy (B)
1<l<vy(y)
k+l _h ao
) DY lﬂik,fyj,)
s>k=v(B)
s>l=vy ()

(_1)v1()/)+v/(f3) be).1T Ksl
* s—2 f“ ha yé’bf) Z (=D y(lkjl) (;m)’*ik-ffﬂsz

1<k<v ()
1<l<vy(B)

k+l  h ao
+ Z =D Y Il/ikn/ﬂjl>
52k>v; ()5 21> v, (B)

(=1 B+vs )

(be),1J _a k+l _h [+7:%
P y(bc)( D DM AT

1<k=<v; (B)
s> ()
k+l ao
LD D G VA VYN P 1/)
s=k>v(B)
1<l<vy(y)

(=B k+ h
5 Jand Voo Yo DY AT e

1<k<v;(v)
s>1>vy(B)
+ (_ 1)k+ly A(Jtot (29)
Z (xj) ==y =i, J=B—ji
sZk>vi(y)
1<I<vy(B)

In the previous equation, the second and fourth brackets match together yielding A’}"_‘ b.I—y
and so do the third and the fifth yielding A?Oiy, I—p- Hence

s By), ”Ahz _ be),1J _a [(_1)VI(ﬁ)+V"(y)AiIi—ﬁ,J—y + (_1)v1(y)+w(ﬂ)Aii

o, hi 1J — a,ai y(bc) Ify,]fﬁ]
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be),1J
+fa(h¢0)[ y?bc)[(_ 1)U’(ﬂ)+VJ(y)A§“i/3J,}, +(— 1)1)1()/)+VJ(5)A?07!%1713]. (30)

If s = 2, then equations (27)—(29) have no meaning as in this case the term aA","_ik’ I—i/ 8yfr,)
is a Kronecker delta and hence formula (26) need not be applied. So, in this case, we can
directly skip to formula (30).

Moreover, from formula (6) we obtain
s

hi _ . i h i
Apy = Z Z SNV jor) =+ Vo) * Vi jner)
r=1 7
where 7 runs for the permutations of the indices 1, ..., s. Comparing the coefficients of the
terms sign(n)yfimm) cee yZ e T y(’ijjv(_)) in the Deltas on both sides of (30) we obtain the
following properties:
(p1) f(f’}fi)’lj =0, whenevera £ h #i # a.

(b2 ST = 1.
(p3) £ =0,if(beTorceJyand(c € Iorb € J).

a,hi
Yy ¢ be) I, J—c bd),1,0—d
(pa) (=)™ fGHC = (= ym@ G
According to (p4) there are functions fh'ij such that

(be),1,J— b,1J
f:hf ‘= (_I)W(C)fhi :

Hence from (p;), we have
(bo),1J 1 b 1J
h,; = (=" s i -
Substituting these expressions in (23) and taking into account the properties (pi), (p3) we
obtain
_ pbo) 1T i hi (be). 1J _h i
G+DL=fin Yoo Ars+ Tuii Yoo Al
bIT i hi —1.h ji
= (_1)V"(C)fhi Vo AT 57 Yoo AT (€29
Moreover, once arow u has been fixed in A’;f s withl’, J' € I, then the following expansion
holds:

s+1

y e o
Ay =3 D Iy A g+ 5T i A ) (32)
v=1

By using (32) in (31) we finally obtain
(s + DL = (=)@ fl (=) Oyl Al 4571y, Al
N
=Jni 2rr

. . 17 . .
for certain functions thi 7' thus reaching our conclusion.
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