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Abstract. The Poincaré–Cartan (PC) form of a Lagrangian on the bundle J 2 = J 2(N,M) is,
as a general rule, defined on J 3 thus leading to a non-equivalence between Euler–Lagrange and
Hamilton–Cartan equations. This naturally leads to the problem of determining what Lagrangians
have a PC form projectable onto J 2, as they will then admit a second-order Hamiltonian formalism.
There are specific examples of this phenomenon in field theory. This paper provides an explicit
classification of such Lagrangians.

1. Introduction

As is well known, the extremals of the functional defined by a first-order Lagrangian density
L dx1 ∧ · · · ∧ dxn on J 1 = J 1(N,M), where M,N are C∞ manifolds of dimensions
dimN = n, dimM = m, can be viewed as the solutions to the so-called Hamilton–Cartan
equation; i.e., a field f : N → M is an extremal if and only if (j 1f )∗iX d� = 0 for all
X ∈ T J 1 (cf [1, formula (3.7)]), where

� = H dx1 ∧ · · · ∧ dxn

+
m∑
i=1

n∑
j=1

(−1)j−1 ∂L

∂yi(j)
dyi ∧ dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn (1)

is the Poincaré–Cartan form (hereafter PC form) attached to L, the function H is given by

H = L−
m∑
i=1

n∑
j=1

∂L

∂yi(j)
yi(j) (2)

and (yi)1�i�m, (xj )1�j�n, (xj , yi, yij ) are coordinates on M , N , and the induced coordinate
system on the one-jet bundle, respectively.

The basic point in the Hamilton–Cartan formalism is that any solution f̄ : N → J 1 to
the Hamilton–Cartan equation is automatically holonomic whenever the Lagrangian is regular.
Therefore, the extremals of a regular variational problem are the n-dimensional solutions of
an exterior differential system on J 1.

However, for a second-order Lagrangian density, the PC form lies on J 3 and the
corresponding Hamilton–Cartan equation should now read

f̄ ∗iX d� = 0 ∀X ∈ T J 3

where f̄ : N → J 3 is a section of the natural projection J 3 → N . There are three cases as
follows:
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(1) For n = 1 (i.e. in second-order mechanics) the theory is the same as in the first order
(see [2]).

(2) Assume n � 2; then,

(2.1) the set of solutions to the Hamilton–Cartan equations is larger than that of Euler–
Lagrange equations for every Lagrangian, and

(2.2) with a suitable notion of regularity (stronger than the classical one), it is proved in [3]
that any solution f̄ : N → J 3 to the Hamilton–Cartan equation is holonomic up to
the second order.

As we can never reach the third-order holonomy, it is natural to pose the question of
determining the second-order Lagrangians whose PC form is projectable onto J 2.

In field theory there are two basic examples of Lagrangians, the PC form of which projects
onto a jet bundle of lower order. The first one is the Lagrangian L1 that governs the interaction
of the Dirac electron field with an electromagnetic potential. In this case, L1 is a first-order
Lagrangian whose PC form projects onto J 0 (for the details see, e.g., [4, section 7.2]). Because
of this, Dirac’s equation is of first order. Actually, L1 is a first-degree polynomial in the
derivatives yij . The second example is the Lagrangian L2 defined by the scalar curvature on
the two-jet bundle of Lorentzian metrics on space–time. Now, the PC form of L2 not only
projects onto J 2 but also onto J 1, thus leading one to a first-order Hamiltonian formalism.

The goal of this paper is to provide the classification of second-order Lagrangians, the PC
form of which projects onto J 2 and therefore admit a true second-order Hamiltonian formalism.
We should remark that in the above examples the PC form projects onto a lower-order jet bundle
due to the fact that the Lagrangian is a first-degree polynomial on the higher derivatives. The
converse only holds for n = 1 but it is no longer true for any dimension n � 2. In fact, as we
shall prove later on, the first-degree Lagrangians in the second derivatives are a small subset
of the Lagrangians, the PC form of which projects onto the second jet bundle.

2. Preliminaries

2.1. Jet bundle notations

We use multi-index notation. A multi-index α = (α1, . . . , αn) of length n is an element
α ∈ N

n, where |α| = α1 + · · · + αn is the order of α. The sum of two multi-indices is
defined componentwise. Multi-indices are ordered as follows: α � β means αi � βi for all
i = 1, . . . , n. Similarly, we set

α! = α1! . . . αn!

(
α

β

)
= α!

β!(α − β)! β � α.

For every 1 � j � n we denote by (j) the multi-index α whose entries are given by αk = δjk ,
1 � k � n. We also set (jk) = (j) + (k), (jkl) = (j) + (k) + (l), etc. The Kronecker symbol
of multi-indices is defined as usual; that is, δαβ = 1 if α = β, δαβ = 0 otherwise. Below we
will need the following lemma whose proof is straightforward.

Lemma 2.1. With the above hypotheses and assumptions we have

δ(hi)(jk) = δhj δik + δhkδij − δhiδjkδhk.
Let (xj , yh, yiα), h, i = 1, . . . , m, 1 � j � n, 0 � |α| � r be the coordinates induced on

J r , 0 � r � 3, by the systems (yi)1�i�m, (xj )1�j�n onM , N , respectively, with yi0 = yi ; i.e.
yiα(j

r
x f ) = (∂ |α|(yi ◦ f )/∂(x1)α1 . . . ∂(xn)αn)(x).
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2.2. Second-order PC form

We recall that a PC form naturally associated to a second-order Lagrangian is locally given by
(cf [5])

� = H dx1 ∧ · · · ∧ dxn +
m∑
i=1

n∑
j=1

Lij dyi ∧ dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

+
m∑
i=1

n∑
j,k=1

Lijk dyi(k) ∧ dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn (3)

where

Lij = (−1)j−1 ∂L

∂yi(j)
+

n∑
k=1

(−1)j

2 − δjk
d

dxk

(
∂L

∂yi(jk)

)
d

dxk
= ∂

∂xk
+

m∑
i=1

∞∑
|α|=0

yiα+(k)
∂

∂yiα

(4)

is the total derivative operator corresponding to ∂/∂xk on jet bundles, and

H = L +
m∑
i=1

n∑
j=1

(−1)jLij y
i
(j) −

m∑
i=1

n∑
j,k=1

1

2 − δjk
∂L

∂yi(jk)
yi(jk)

Lijk = (−1)j−1

2 − δjk
∂L

∂yi(jk)
.

(5)

3. Statement of the result

Before stating the theorem, we first introduce some notations. For every s = 1, . . . , n, let
Is be the set of increasing indices I = (i1, . . . , is), where i1, . . . , is are integers such that
1 � i1 < · · · < is � n. For s = 0 we set I0 = ∅. The elements I ∈ Is are in
one-to-one correspondence with the increasing maps I : {1, . . . , s} → {1, . . . , n}, that is,
I (1) < · · · < I (s). We order Is lexicographically; that is, I < J means there exists an index
h = 0, . . . , s− 1 such that i1 = j1, . . . , ih = jh, ih+1 < jh+1. Bearing these notations in mind,
we set for every h, i = 1, . . . , m; I � J , I, J ∈ Is ; 2 � s � n,

!hiIJ =

∣∣∣∣∣∣∣∣∣
yh(i1j1)

yi(i1j2)
. . . yi(i1js )

yh(i2j1)
yi(i2j2)

. . . yi(i2js )
...

...
. . .

...

yh(isj1)
yi(is j2)

. . . yi(is js )

∣∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣
yi(i1j1)

yh(i1j2)
. . . yi(i1js )

yi(i2j1)
yh(i2j2)

. . . yi(i2js )
...

...
. . .

...

yi(is j1)
yh(is j2)

. . . yi(is js )

∣∣∣∣∣∣∣∣∣

+ · · · +

∣∣∣∣∣∣∣∣∣
yi(i1j1)

yi(i1j2)
. . . yh(i1js )

yi(i2j1)
yi(i2j2)

. . . yh(i2js )
...

...
. . .

...

yi(is j1)
yi(is j2)

. . . yh(isjs )

∣∣∣∣∣∣∣∣∣ . (6)

We also set:
(i) !hi∅∅ = 1 for s = 0.
(ii) !hii1j1

= yh(i1j1)
for s = 1.

(iii) !IJ = !JI whenever I > J .
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(iv) Given an index 1 � k � n and an element I ∈ Is , we define

!hiI−k,J =
{
!hiI−{k},J if k ∈ I
0 if k /∈ I

where I − {k} denotes the increasing sequence obtained by deleting the index k in I ; that is,

I − k = (i1, . . . , ît , . . . , is) it = k
and similarly for !hiI,J−k .

Remark 3.1. We have

(1) !hiIJ = !ihIJ for s = 2.
(2) !hiI−k−l,J = !hiI−{k,l},J , if k �= l, but !hiI−k−k,J �= !hiI−{k},J , as the left-hand side is always

zero whereas the right-hand side does not vanish necessarily.
(3) The functions !hiIJ are not linearly independent; for example, we have

!hi(12a3···as)(34a3···as) −!hi(13a3···as)(24a3···as) +!hi(14a3···as)(23a3···as) = 0.

Theorem 3.2. The PC form of a second-order Lagrangian L is projectable onto J 2(N,M) if
and only if L can be written as

L =
n∑
s=0

∑
I�J,I,J∈Is

m∑
h,i=1

f hiIJ!
hi
IJ (7)

for certain differentiable functions f hiIJ on J 1(N,M).

4. The associated linear PDE system

Proposition 4.1. The PC form of a second-order Lagrangian L is projectable onto J 2 if and
only if the following system of linear partial differential equations (PDEs) holds:

n∑
j=1

1

2 − δjk
∂2L

∂yhα−(j)∂y
i
(jk)

= 0 (8)

for every system of indices α ∈ N
n, |α| = 3; 1 � k � n; h, i = 1, . . . , m.

Proof. A necessary condition for � to be projectable onto J 2 is that Lij depends only on up
to the second derivatives. Hence, from the formula (4), it follows that (8) must hold for every
multi-index |α| = 3 and every h, i = 1, . . . , m, 1 � k � n. This condition is also sufficient as,
if equations (8) are satisfied, thenH ∈ C∞(J 2), as it follows from formula (5). Consequently,
the Lagrangians, the PC form of which is projectable onto J 2, are the solutions of a system
of homogeneous linear partial differential equations with constant coefficients which are to be
determined explicitly. �

There are three types of equations in (8).

I. If α = (aaa), 1 � a � n, then (8) becomes

∂2L

∂yh(aa)∂y
i
(ak)

= 0

with h, i = 1, . . . , m; a, k = 1, . . . , n.
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II.1. If α = (aab), a �= b �= k �= a, then for a, b, k = 1, . . . , n, equation (8) reads:

(a) for h �= i,
∂2L

∂yh(ab)∂y
i
(ak)

+
∂2L

∂yh(aa)∂y
i
(bk)

= 0

with h, i = 1, . . . , m, and
(b) for h = i,

∂2L

∂yh(ab)∂y
h
(ak)

+
∂2L

∂yh(aa)∂y
h
(bk)

= 0

with h = 1, . . . , m; b < k.

II.2. We assume α = (aab), k ∈ {a, b}, a, b, k = 1, . . . , n. If k = a, then equation (8) reads

2
∂2L

∂yh(ab)∂y
i
(aa)

+
∂2L

∂yh(aa)∂y
i
(ab)

= 0

and each term vanishes because of the equation in (I). Hence we have the case k = b remaining
and we further suppose a < b by index symmetry. Then:

(a) for h �= i,
∂2L

∂yh(ab)∂y
i
(ab)

+ 2
∂2L

∂yh(aa)∂y
i
(bb)

= 0

with h, i = 1, . . . , m, and
(b) for h = i,

∂2L

∂yh(ab)∂y
h
(ab)

+ 2
∂2L

∂yh(aa)∂y
h
(bb)

= 0

with h = 1, . . . , m.

III.1. If α = (abc), with a < b < c, k �= a, b, c, for h �= i we have

∂2L

∂yh(bc)∂y
i
(ak)

+
∂2L

∂yh(ac)∂y
i
(bk)

+
∂2L

∂yh(ab)∂y
i
(ck)

= 0

with h, i = 1, . . . , m; a, b, c, k = 1, . . . , n, and

III.2. if α = (abc), with a < b < c < k, for h = i,
∂2L

∂yh(bc)∂y
h
(ak)

+
∂2L

∂yh(ac)∂y
h
(bk)

+
∂2L

∂yh(ab)∂y
h
(ck)

= 0

with h = 1, . . . , m.
In the case (III.1) it is proved that half of the equations depend linearly on the other half,

and in the remaining cases the equations are linearly independent. Hence, the number of
essential equations in (8) is

µ = µ(m, n) = 1
2 (m + 1)mn +m2n(n− 1) +m(m− 1)n(n− 1)(n− 2)

+ 1
2mn(n− 1)(n− 2) + 1

2m(m− 1)n(n− 1) + 1
2mn(n− 1)

+ 1
12m(m− 1)n(n− 1)(n− 2)(n− 3) + 1

24mn(n− 1)(n− 2)(n− 3)

= m(2m− 1)

24
n4 +

m(2m− 1)

4
n3 − m(14m− 25)

24
n2 +

m(2m− 1)

4
n. (9)
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5. Proof of theorem 3.2

5.1. The ‘if’ part

First, we check that the functions !hiIJ introduced in section 3 satisfy the system (8). As it is
linear, all functions in the formula (7) will also satisfy the system, thus proving the ‘if’ part of
theorem 3.2.

The proof is by induction on the order s of the determinants in !hiIJ . The case s = 1
is immediate since !hiIJ is of first order and, as the system (8) is of second order, it holds
identically. The case s = 2 is exceptional because of the factor (s − 2)−1 that appears in
the recurrence formula. Moreover, the proof of this case is particularly cumbersome since
∂2!hiIJ /∂y

b
(uv)∂y

a
(kl) is a constant expressed as a function of the Kronecker deltas of the indices

involved. Therefore, we are led to write a different proof for each type of equation (i.e. (I)–(III))
into which the system (8) decomposes. In the general case, the proof resorts to an analogous
technique in order to state that the coefficients of the functions Qab,tα , defined below, vanish.
These coefficients are expressed again in terms of certain Kronecker deltas of the involved
indices.

We start with the following lemma.

Lemma 5.1. With the same assumptions and notations as above we have

∂!iiIJ

∂yaα
= s

s − 1
δia

s∑
k,l=1

(−1)k+lδα,(ikjl )!
ii
I−ik ,J−jl

(|α| = 2; a, i = 1, . . . , m; I, J ∈ Is , I � J, s � 2).

(10)

Proof. The formula in the statement follows, after a calculation, from the well known formula
for the derivative of a functional determinant! = |C1, . . . , Cs |, the columns of which are Ci ;
that is,

!′ = |C ′
1, C2, . . . , Cs | + |C1, C

′
2, . . . , Cs | + · · · + |C1, . . . , Cs−1, C

′
s |.

�

Proposition 5.2. The functions !hiIJ in section 3 satisfy the system (8).

Proof. If s = 1 the result is obvious as the second derivatives of!hiIJ vanish identically in this
case. This is because each!hiIJ is a linear function (see section 3–(ii)). If s = 2, then from (6)
we have

!hiIJ =
∣∣∣∣ yh(i1j1)

yi(i1j2)

yh(i2j1)
yi(i2j2)

∣∣∣∣ +

∣∣∣∣ yi(i1j1)
yh(i1j2)

yi(i2j1)
yh(i2j2)

∣∣∣∣ I = (i1 < i2) J = (j1 < j2)

and taking partial derivatives, from lemma 2.1 we obtain

∂2!hiIJ

∂yb(uv)∂y
a
(kl)

= (δhaδib + δiaδhb)

×[(δki1δlj1 + δkj1δli1 − δklδi1j1δkj1)(δui2δvj2 + δuj2δvi2 − δuvδi2j2δuj2)

−(δki2δlj1 + δkj1δli2 − δklδi2j1δkj1)(δui1δvj2 + δuj2δvi1 − δuvδi1j2δuj2)

+(δki2δlj2 + δkj2δli2 − δklδi2j2δkj2)(δui1δvj1 + δuj1δvi1 − δuvδi1j1δuj1)

−(δki1δlj2 + δkj2δli1 − δklδi1j2δkj2)(δui2δvj1 + δuj1δvi2 − δuvδi2j1δuj1)]. (11)

According to equations (I)–(III) we have to distinguish three cases as follows.
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(i) If α = (vvv), v, l = 1, . . . , n, then from (11) we obtain

∂2!hiIJ

∂yb(vv)∂y
a
(vl)

= (δhaδib + δiaδhb)

×[δlj2(δvi1δvj1δi2j1 − δvi2δvj1δi1j1) + δlj1(δvi2δvj2δi1j2 − δvi1δvj2δi2j2)

+δvj2δvj1(−δli2δi1j1 − δli1δi2j2 + δli1δi2j1 + δli2δi1j2)

+2δvj1δvj2δvl(−δvi2δi1j1 − δvi1δi2j2

+δvi1δi2j1 + δvi2δi1j2 + δi1j1δi2j2 − δi2j1δi1j2)].

On the right-hand side of this formula the terms δvi1δvj1δi2j1 , δvi2δvj1δi1j1 , δvi2δvj2δi1j2 ,
δvi1δvj2δi2j2 vanish as v = i1 = j1 implies δi2j1 = 0, and the same for the others. Similarly, the
factors δvj2δvj1 , δvj1δvj2δvl also vanish.
(ii.1) If α = (uvv), u �= v �= l �= u, then from (11) we obtain

∂2L

∂yb(uv)∂y
a
(vl)

+
∂2L

∂yb(vv)∂y
a
(ul)

= (δhaδib + δiaδhb)[δvj2(δvi2 − δi2j2)(δui1δlj1 + δuj1δli1)

+δvj1(δvi1 − δi1j1)(δuj2δli2 + δui2δlj2)− δvj2(δvi1 − δi1j2)(δui2δlj1 + δuj1δli2)

−δvj1(δvi2 − δi2j1)(δuj2δli1 + δui1δlj2)]

and the right-hand side vanishes for

δvj2(δvi2 − δi2j2) = δvj1(δvi1 − δi1j1)

= δvj2(δvi1 − δi1j2) = δvj1(δvi2 − δi2j1) = 0

as i1 < j2.
(ii.2) If α = (uvv), l = u, v < u, then from (11) we obtain

∂2!hiIJ

∂yb(uv)∂y
a
(uv)

+ 2
∂2!hiIJ

∂yb(vv)∂y
a
(u u)

= (4δui2δuj1 − 2δi2j1δuj1)δi1j2δvj2

+(4δi2j1δuj1 − 6δui2δuj1)δvi1δvj2 + (4δi2j1 − 6δvi2)δui1δuj2δvj1

+(4δvi2 − 2δi2j1)δi1j2δuj2δvj1

+((6δui2 − 4δi2j2)δvi1 + (2δi2j2 − 4δui2)δi1j1)δvj1δuj2

+((6δvi2 − 4δi2j2)δui1 + (2δi2j2 − 4δvi2)δi1j1)δvj2δuj1 .

On the right-hand side the first four terms vanish as i1 < j2. If v = j1, u = j2 the sixth
term vanishes and so does the fifth, which is easily checked. Similarly, when v = j2, u = j1.
(iii) If α = (uvk), u < v < k, l /∈ {u, v, k}, then, as a simple calculation using Maple V
shows, from the formula (11) we conclude that the sum

∂2!hiIJ

∂yb(uv)∂y
a
(kl)

+
∂2!hiIJ

∂yb(kv)∂y
a
(ul)

+
∂2!hiIJ

∂yb(ku)∂y
a
(vl)

vanishes identically.
Now we proceed by induction on s assuming s � 3. Expanding the hth determinant in

!hiIJ according to its hth column for h = 1, . . . , s, we first obtain

!hiIJ = 1

s − 1

s∑
k,l=1

(−1)k+lyh(ikjl )!
ii
I−ik ,J−jl (12)

and taking derivatives we have

∂!hiIJ

∂yb(rt)
= 1

s − 1

s∑
k,l=1

(−1)k+l
{
δhbδ(rt),(ikjl )!

ii
I−ik ,J−jl + yh(ikjl )

∂!iiI−ik ,J−jl
∂yb(rt)

}
. (13)
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Again taking derivatives, and summing up,

(s − 1)
n∑
r=1

1

2 − δrt
∂2!hiIJ

∂yaα−(r)∂y
b
(rt)

= Qab,tα +
s∑

k,l=1

(−1)k+lyh(ikjl )

n∑
r=1

1

2 − δrt
∂2!iiI−ik ,J−jl
∂yaα−(r)∂y

b
(rt)

(14)

where

Qab,tα =
s∑

k,l=1

n∑
r=1

(−1)k+l
{
δhb
δ(rt),(ikjl )

2 − δrt
∂!iiI−ik ,J−jl
∂yaα−(r)

+ δha
δα−(r),(ikjl )

2 − δrt
∂!iiI−ik ,J−jl
∂yb(rt)

}
.

By the induction hypothesis the second term on the right-hand side of (14) vanishes. Hence
we are led to proveQab,tα = 0, for every multi-index α ∈ N

n, |α| = 3 and all a, b = 1, . . . , m,
t = 1, . . . , n. By applying lemma 5.1 to the derivatives of!iiI−ik ,J−jl in the formula above we
obtain

Qab,tα = s − 1

s − 2
(δhbδia + δhaδib)

∑
1�k′<k�s

1�l′<l�s

(−1)k+k
′+l+l′Ckk

′,ll′,t
α !iiI(kk′),J(ll′)

with !iiI(kk′),J(ll′) = !iiI−{ik ,ik′ },J−{jl ,jl′ } and

Ckk
′,ll′,t

α =
n∑
r=1

1

2 − δrt (δ(rt),(ikjl )δα−(r),(ik′ jl′ ) − δ(rt),(ikjl′ )δα−(r),(ik′ jl )
−δ(rt),(ik′ jl )δα−(r),(ikjl′ ) + δ(rt),(ik′ jl′ )δα−(r),(ikjl )).

As the functions!iiI(kk′),J(ll′) in the rank 1 � k′ < k � s, 1 � l′ < l � s are linearly independent,

Qab,tα = 0 if and only if Ckk
′,ll′,t

α = 0. Similar to the case s = 2 we have to distinguish three
cases as follows.

(i) If α = (vvv), then a simple calculation by using lemma 2.1 yields

(2 − δvt )Ckk′,ll′,t
(vvv) = δvjl δtjl′ (δvik δik′ jl − δvik′ δikjl ) + δvjl′ δtjl (δvik′ δikjl′ − δvik δik′ jl′ )

+δvjl δvjl′ [(δtik + 2δvt δvik )(δik′ jl − δik′ jl′ )
+(δtik′ + 2δvt δvik′ )(δikjl′ − δikjl ) + 2δvt (δikjl δik′ jl′ − δikjl′ δik′ jl )] = 0

for δvjl δvjl′ = 0, δvik δik′ jl − δvik′ δikjl vanishes when v = jl and, analogously, δvik′ δikjl′ −
δvik δik′ jl′ also vanishes when v = jl′ .

(ii) Assume α = (uvv), with u �= v. Then we have to consider three subcases as follows.
(ii.1) If t �= u, t �= v, then

2Ckk
′,ll′,t

(uvv) = (δuik δtjl + δujl δtik )δvjl′ (δvik′ − δik′ jl′ )
+(δuik δtjl′ + δujl′ δtik )δvjl (δik′ jl − δvik′ )
+(δuik′ δtjl + δujl δtik′ )δvjl′ (δikjl′ − δvik )
+(δuik′ δtjl′ + δujl′ δtik′ )δvjl (δvik − δikjl )

and the right-hand side vanishes as
δvjl′ (δvik′ − δik′ jl′ ) = δvjl (δik′ jl − δvik′ )

= δvjl′ (δikjl′ − δvik ) = δvjl (δvik − δikjl ) = 0.

(ii.2) If t = u, then Ckk
′,ll′,u

(uvv) = s1 + s2 + s3 + s4, where
s1 = δujl δvjl′ (3δuik δvik′ + δikjl δik′ jl′ − 2δikjl δvik′ − 2δuik δik′ jl′ )

s2 = δujl δvjl′ (3δuik′ δvik + δik′ jl δikjl′ − 2δik′ jl δvik − 2δuik′ δikjl′ )

s3 = δujl′ δvjl (3δuik δvik′ + δik′ jl δikjl′ − 2δikjl′ δvik′ − 2δuik δik′ jl )

s4 = δujl′ δvjl (3δuik′ δvik + δikjl δik′ jl′ − 2δik′ jl′ δvik − 2δuik′ δikjl )
and it is easily checked that the right-hand side of the equations above vanish
identically. Hence Ckk

′,ll′,u
(uvv) = 0.



Lagrangians admitting a Hamilton–Cartan formalism 6011

(ii.3) If t = v, then
2
3C

kk′,ll′,v
(uvv) = δvjl δvjl′ [(δikjl′ − δikjl )δuik′ + (δik′ jl − δik′ jl′ )δuik ]

+δujl δvjl′ (δikjl′ δvik′ − δik′ jl′ δvik ) + δujl′ δvjl (δik′ jl δvik − δikjl δvik′ )
and Ckk

′,ll′,v
(uvv) vanishes as

δvjl δvjl′ = δvjl′ (δikjl′ δvik′ − δik′ jl′ δvik ) = δvjl (δik′ jl δvik − δikjl δvik′ ) = 0.

(iii) If α = (uvw) with u �= v �= w �= u, then we have to consider two subcases as follows.

(iii.1) If t /∈ {u, v,w}, then Ckk
′,ll′,v

(uvw) = 0 as a simple computation shows.

(iii.2) If t ∈ {u, v,w}, say t = u, then Ckk
′,ll′,u

(uvw) = s1 + s2 + s3 + s4, where

s1 = (δvik′ δwjl′ + δvjl′ δwik′ )δujl (δuik − δikjl )
s2 = −(δvik δwjl′ + δvjl′ δwik )δujl (δuik′ − δik′ jl )
s3 = −(δvik′ δwjl + δvjl δwik′ )δujl′ (δuik − δikjl′ )
s4 = (δvik δwjl + δvjl δwik )δujl′ (δuik′ − δik′ jl′ )

and every summand vanishes as

δujl (δuik − δikjl ) = δujl (δuik′ − δik′ jl ) = δujl′ (δuik − δikjl′ )
= δujl′ (δuik′ − δik′ jl′ ) = 0.

For t = v or w the proof runs analogously.

This completes the proof of proposition 5.2. �

5.2. The ‘only if’ part

Next, we prove the ‘only if’ part of theorem 3.2.
As the determinants!hiIJ are polynomials of degree �n, the first step in the proof consists

of proving that an arbitrary solution L to the system (8) is also a polynomial of degree �n
(see proposition 5.3). Moreover, as the system (8) is homogeneous, it suffices to state the
proof for the homogeneous solutions to (8) of degree say s, with respect to the second-order
variables yi(jk). Starting from this point the proof is by recurrence on s. For s = 0 or s = 1
the result is trivial. As in the ‘if’ part, the case s = 2 is exceptional because of the factor
(s − 2)−1 appearing in the recurrence formula. To prove this case we first need to establish
certain symmetries of the second derivatives of L (see lemma 5.4 below).

For the general case, the basic idea is to use the fact that if L is a solution to (8), then so is
∂L/∂yα(βγ ). Then, we apply the recurrence hypothesis to this derivative (see the formula (22)).
Since L is homogeneous of degree s + 1, from Euler’s theorem we deduce the formula (23).
The rest of the proof—in essence a long computation—reduces to state that certain symmetries
of the functions f (bc),IJa,hi hold true allowing us to factor out the determinants!hiI ′J ′ of order s +1
in the expression of L. This finishes the proof.

Proposition 5.3. If a function L ∈ C∞(J 2) satisfies the system (8), then L is a polynomial
function of degree �n in the variables yiα , 1 � i � m, |α| = 2, with coefficients in C∞(J 1).

Proof. We only need to prove that for all indices i0, i1, . . . , in = 1, . . . , m, a0 � a1 � · · · � an,
1 � ai � bi � n, 0 � i � n, we have

∂n+1L

∂y
i0
(a0b0)

∂y
i1
(a1b1)

· · · ∂yin(anbn)
= 0. (15)
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In fact, taking derivatives with respect to ∂/∂yj(ad) on the equation (II.1), we obtain

∂3L

∂yh(ab)∂y
i
(ac)∂y

j

(ad)

+
∂3L

∂yh(aa)∂y
j

(ad)∂y
i
(bc)

= 0 (16)

for all indices h, i, j = 1, . . . , m, a �= b �= c �= a, a, b, c, d = 1, . . . , n. From equation (I)
we conclude that the second summand on the left-hand side in (16) vanishes. Similarly, again
taking derivatives with respect to ∂/∂yj(ad) on the equation (II.2) yields

∂3L

∂yh(ab)∂y
i
(ab)∂y

j

(ad)

+ 2
∂3L

∂yh(aa)∂y
j

(ad)∂y
i
(bb)

= 0

for all indices h, i, j = 1, . . . , m, a �= b, a, b, d = 1, . . . , n, and proceeding as above we
finally obtain

∂3L

∂yh(ab)∂y
i
(ac)∂y

j

(ad)

= 0 (17)

for all indices h, i, j = 1, . . . , m, a �= b, a �= c, a, b, c, d = 1, . . . , n.
Moreover, we remark that every sequence of bi-indices (a0b0), . . . , (anbn) such that

a0 � a1 � · · · � an, 1 � ai � bi � n, 0 � i � n, satisfies either

(i) there exist two indices 0 � i < j � n, such that ai = bi = aj or ai = bi = bj , or
(ii) there exist three indices 0 � i < j < k � n, such that ai = aj = ak ,
as it is easily checked that the only sequences of maximal length satisfying neither (i) nor (ii)
are (12), (13), . . . , (i, i + 2), . . . , (n− 1, n) and (11), (22), . . . , (nn), both of length n. Hence
from (17) and taking into account (i) and (ii), we conclude that (15) holds, thus finishing the
proof. �

According to proposition 5.3 every solution to the system (8) can be written as L =∑n
s=0 Ls , with

rLs = f α1...αs
i1···is y

i1
α1

· · · yisαs f
α1···αs
i1···is ∈ C∞(J 1)

|αh| = 2 1 � h � s i1, . . . , is = 1, . . . , m.
(18)

As equations (8) are homogeneous, L is a solution if and only every Ls is a solution to this
system. Hence from now on we assume that L itself is homogeneous; i.e., there exists an
integer 0 � s � n, such that

rL = f a1b1...asbs
i1···is y

i1
(a1b1)

· · · yis(asbs ) f
a1b1···asbs
i1···is ∈ C∞(J 1)

ah � bh 1 � h � s a1 � · · · � as.
(19)

For s = 0 or 1, the result is trivial (see (i), (ii) in section 3). For s = 2 we proceed directly.
First, we state a general result in the following:

Lemma 5.4. Let L be a solution to the system (8). For arbitrary indices h, i = 1, . . . , m;
a, b, c, d = 1, . . . , n, a � b, c � d , we have

∂2L

∂yh(ab)∂y
i
(cd)

= ∂2L

∂yi(ab)∂y
h
(cd)

.

Proof. If h = i, the result is trivial, so suppose h �= i. First, we assume a, b, c, d are pairwise
different. Then, from equation (III.1) we obtain

∂2L

∂yh(bc)∂y
i
(ad)

+
∂2L

∂yh(ac)∂y
i
(bd)

+
∂2L

∂yh(ab)∂y
i
(cd)

= 0.
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Permuting c and d ,

∂2L

∂yh(bd)∂y
i
(ac)

+
∂2L

∂yh(ad)∂y
i
(bc)

+
∂2L

∂yh(ab)∂y
i
(cd)

= 0

and permuting h and i in the former equation,

∂2L

∂yh(ad)∂y
i
(bc)

+
∂2L

∂yh(bd)∂y
i
(ac)

+
∂2L

∂yh(cd)∂y
i
(ab)

= 0.

Subtracting the last two equations we reach the required conclusion. Next, we assume d = a

(the cases d = b, d = c are the same). Then, from equation (II.1.(a)) we obtain

∂2L

∂yh(ab)∂y
i
(ac)

+
∂2L

∂yh(aa)∂y
i
(bc)

= 0

and permuting b and c, and comparing both equations, we reach the required conclusion. If
a = b and c = d but a �= c, then from equation (II.2), permuting a and c we have

∂2L

∂yh(ac)∂y
i
(ac)

+ 2
∂2L

∂yh(aa)∂y
i
(cc)

= 0
∂2L

∂yh(ac)∂y
i
(ac)

+ 2
∂2L

∂yh(cc)∂y
i
(aa)

= 0

and comparing both equations we have our conclusion. Finally, the cases in which three or
four of the indices a, b, c, d coincide are trivial because of equation (I). �

Next we continue with the proof of the case s = 2. If L is a second-degree homogeneous
solution to equations (8) then the Taylor expansion yields

L = 1

2

∑
h,i

∑
a�b

∑
c�d

∂2L

∂yh(ab)∂y
i
(cd)

yh(ab)y
i
(cd). (20)

We assume a < b < c, d �= a, b, c, h �= i. Then the terms involving the indices h, i, and
a, b, c, d are the following:

1

2

(
∂2L

∂yh(ab)∂y
i
(cd)

yh(ab)y
i
(cd) +

∂2L

∂yh(ac)∂y
i
(bd)

yh(ac)y
i
(bd) +

∂2L

∂yh(ad)∂y
i
(bc)

yh(ad)y
i
(bc)

+
∂2L

∂yh(cd)∂y
i
(ab)

yh(cd)y
i
(ab) +

∂2L

∂yh(bd)∂y
i
(ac)

yh(bd)y
i
(ac) +

∂2L

∂yh(bc)∂y
i
(ad)

yh(bc)y
i
(ad)

)
.

Using equations (III.1) and taking into account lemma 5.4, the sum above is readily seen to be
equal to

1

2

(
∂2L

∂yh(ab)∂y
i
(cd)

(yh(ab)y
i
(cd) + yh(cd)y

i
(ab) − yh(bc)yi(ad) − yh(ad)yi(bc))

+
∂2L

∂yh(ac)∂y
i
(bd)

(yh(ac)y
i
(bd) + yh(bd)y

i
(ac) − yh(bc)yi(ad) − yh(ad)yi(bc))

)

= 1

2

(
∂2L

∂yh(ab)∂y
i
(cd)

!hi(ac)(bd) +
∂2L

∂yh(ac)∂y
i
(bd)

!hi(ab)(cd)

)
. (21)

The case where a = b = c is trivial by virtue of equation (I). When a = b, (or c = d), the
sum above is now

1

2

∂2L

∂yh(ac)∂y
i
(ad)

!hi(ac)(ad).



6014 R Durán Dı́az and J Muñoz Masqué

Last, if a = c, b = d , this yields

1

2

∂2L

∂yh(aa)∂y
i
(bb)

!hi(ab)(ab).

But these two cases may be seen as mere specializations of the general formula (21) with
suitable values of a, b, c and d . So, for s = 2 and remembering that L is a second-degree
polynomial, it becomes apparent thatL is always a linear combination of at most two ‘Deltas’.

Next, we assume 2 � s < n and that theorem 3.2 holds for every homogeneous function
L of degree s. Let us consider a homogeneous solution L of degree s + 1 to equations (I)–(III)
and let us fix three indices 1 � α � m, 1 � β � γ � n. As equations (I)–(III) are linear,
homogeneous, and with constant coefficients, it is clear that ∂L/∂yα(βγ ) is also a solution to
this system. Hence, by virtue of the induction hypothesis, we have

∂L

∂yα(βγ )
= f (βγ ),IJα,hi !hiIJ f

α,IJ
(βγ ),hi ∈ C∞(J 1(N,M)). (22)

In the previous formula we have applied Einstein’s convention for repeated indices, and we
will do so from now on, since otherwise the formulas become too long.

As L is homogeneous of degree s + 1, from Euler’s theorem we obtain

(s + 1)L = ya(bc)
∂L

∂ya(bc)
= f (bc),IJa,hi ya(bc)!

hi
IJ (23)

and taking derivatives with respect to yα(βγ ) on both sides of (23) from equation (22) we have

(s + 1)f (βγ ),IJα,hi !hiIJ = (s + 1)
∂L

∂yα(βγ )
= f (βγ ),IJα,hi !hiIJ + f (bc),IJa,hi ya(bc)

∂!hiIJ

∂yα(βγ )
.

Hence

sf
(βγ ),IJ

α,hi !hiIJ = f (bc),IJa,hi ya(bc)
∂!hiIJ

∂yα(βγ )
. (24)

Before going on, let us introduce a notation. We set: if I = (i1, . . . , is) and β ∈ I , then
u = νI (β) means β = iu. The following is quickly checked:

νI−ik (β) =


νI (β)− 1 if k < νI (β)

not defined if k = νI (β)
νI (β) if k > νI (β).

(25)

As a simple computation shows, by using the very definition of !iiIJ we have

∂!iiIJ

∂yα(βγ )
= s

s − 1
δαi((−1)νI (β)+νJ (γ )!iiI−β,J−γ + (−1)νJ (β)+νI (γ )!iiI−γ,J−β). (26)

From formula (13) and using (26)

∂!hiIJ

∂yα(βγ )
= 1

s − 1

s∑
k,l=1

(−1)k+l
{
δhαδ(βγ ),(ikjl )!

ii
I−ik ,J−jl

+
s − 1

s − 2
δαiy

h
(ikjl )

[(−1)νI−ik (β)+νJ−jl (γ )!iiI−β−ik ,J−γ−jl

+(−1)νJ−jl (β)+νI−ik (γ )!iiI−γ−ik ,J−β−jl ]
}
. (27)
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Hence equation (24) reads

sf
(βγ ),IJ

α,hi !hiIJ = f (bc),IJa,hi ya(bc)

(
1

s − 1

s∑
k,l=1

(−1)k+l
{
δhαδ(βγ ),(ikjl )!

ii
I−ik ,J−jl

+
s − 1

s − 2
δαiy

h
(ikjl )

[(−1)νI−ik (β)+νJ−jl (γ )!iiI−β−ik ,J−γ−jl

+(−1)νJ−jl (β)+νI−ik (γ )!iiI−γ−ik ,J−β−jl ]
})

(28)

and using formula (25) the preceding equation becomes

sf
(βγ ),IJ

α,hi !hiIJ = 1

s − 1
f
(bc),IJ
a,hi ya(bc)

s∑
k,l=1

(−1)k+lδhαδ(βγ ),(ikjl )!
ii
I−ik ,J−jl

+
1

s − 2
f
(bc),IJ
a,hα ya(bc)

[ s+1∑
k,l=1

(−1)k+lyh(ikjl )(−1)νI−ik (β)+νJ−jl (γ )

×!ααI−β−ik ,J−γ−jl + (−1)νI−ik (γ )+νJ−jl (β)!ααI−γ−ik ,J−β−jl

]
= 1

s − 1
f
(bc),IJ
a,αi ya(bc)((−1)νI (β)+νJ (γ )!iiI−β,J−γ + (−1)νI (γ )+νJ (β)!iiI−γ,J−β)

+
(−1)νI (β)+νJ (γ )

s − 2
f
(bc),IJ
a,hα ya(bc)

( ∑
1�k<νI (β)

1�l<νJ (γ )

(−1)k+lyh(ikjl )!
αα
I−β−ik ,J−γ−jl

+
∑

s�k>νI (β)

s�l>νJ (γ )

(−1)k+lyh(ikjl )!
αα
I−β−ik ,J−γ−jl

)

+
(−1)νI (γ )+νJ (β)

s − 2
f
(bc),IJ
a,hα ya(bc)

( ∑
1�k<νI (γ )

1�l<νJ (β)

(−1)k+lyh(ikjl )!
αα
I−γ−ik ,J−β−jl

+
∑

s�k>νI (γ ),s�l>νJ (β)
(−1)k+lyh(ikjl )!

αα
I−γ−ik ,J−β−jl

)

− (−1)νI (β)+νJ (γ )

s − 2
f
(bc),IJ
a,hα ya(bc)

( ∑
1�k<νI (β)

s�l>νJ (γ )

(−1)k+lyh(ikjl )!
αα
I−β−ik ,J−γ−jl

+
∑

s�k>νI (β)

1�l<νJ (γ )

(−1)k+lyh(ikjl )!
αα
I−β−ik ,J−γ−jl

)

− (−1)νI (γ )+νJ (β)

s − 2
f
(bc),IJ
a,hα ya(bc)

( ∑
1�k<νI (γ )

s�l>νJ (β)

(−1)k+lyh(ikjl )!
αα
I−γ−ik ,J−β−jl

+
∑

s�k>νI (γ )

1�l<νJ (β)

(−1)k+lyh(ikjl )!
αα
I−γ−ik ,J−β−jl

)
. (29)

In the previous equation, the second and fourth brackets match together yielding !hαI−β,J−γ
and so do the third and the fifth yielding !hαI−γ,J−β . Hence

sf
(βγ ),IJ

α,hi !hiIJ = 1

s − 1
f
(bc),IJ
a,αi ya(bc)[(−1)νI (β)+νJ (γ )!iiI−β,J−γ + (−1)νI (γ )+νJ (β)!iiI−γ,J−β]
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+f (bc),IJa,hα ya(bc)[(−1)νI (β)+νJ (γ )!hαI−β,J−γ + (−1)νI (γ )+νJ (β)!hαI−γ,J−β]. (30)

If s = 2, then equations (27)–(29) have no meaning as in this case the term ∂!iiI−ik ,J−jl /∂y
b
(rt)

is a Kronecker delta and hence formula (26) need not be applied. So, in this case, we can
directly skip to formula (30).

Moreover, from formula (6) we obtain

!hiIJ =
s∑
r=1

∑
π

sign(π)yi(i1jπ(1)) . . . y
h
(ir jπ(r))

. . . yi(is jπ(s))

where π runs for the permutations of the indices 1, . . . , s. Comparing the coefficients of the
terms sign(π)yi(i1jπ(1)) . . . y

h
(ir jπ(r))

. . . yi(is jπ(s)) in the Deltas on both sides of (30) we obtain the
following properties:

(p1) f
(bc),IJ
a,hi = 0, whenever a �= h �= i �= a.

(p2) sf
(bc),IJ
h,ii = f (bc),IJi,hi .

(p3) f
(bc),IJ
a,hi = 0, if (b ∈ I or c ∈ J ) and (c ∈ I or b ∈ J ).

(p4) (−1)νJ (c)f (bc),I,J−c
i,hi = (−1)νJ (d)f (bd),I,J−d

i,hi .
According to (p4) there are functions f IJhi such that

f
(bc),I,J−c
i,hi = (−1)νJ (c)f b,IJhi .

Hence from (p2), we have

f
(bc),IJ
h,ii = (−1)νJ (c)s−1f

b,IJ
hi .

Substituting these expressions in (23) and taking into account the properties (p1), (p3) we
obtain

(s + 1)L = f (bc),IJi,hi yi(bc)!
hi
IJ + f (bc),IJh,ii yh(bc)!

ii
IJ

= (−1)νJ (c)f b,IJhi (yi(bc)!
hi
IJ + s−1yh(bc)!

ii
IJ ). (31)

Moreover, once a rowu has been fixed in!hiI ′J ′ , with I ′, J ′ ∈ Is+1, then the following expansion
holds:

!hiI ′J ′ =
s+1∑
v=1

(−1)u+v[yi(i ′uj ′
v)
!hiI ′−iu,J ′−j ′

v
+ s−1yh(i ′uj ′

v)
!iiI ′−iu,J ′−j ′

v
]. (32)

By using (32) in (31) we finally obtain

(s + 1)L = (−1)νI (b)f b,IJhi (−1)νI (b)+νJ (c)[yi(bc)!
hi
IJ + s−1yh(bc)!

ii
IJ ]

= f̃ I ′J ′
hi !

hi
I ′J ′

for certain functions f̃ I
′J ′
hi , thus reaching our conclusion.
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[5] Muñoz Masqué J 1985 Differential Geometric Methods in Mathematical Physics (Clausthal, 1983) (Springer

Lecture Notes in Mathematics vol 1139) ed H D Doebner and J D Hennig (Berlin: Springer) p 74


